The Asymptotic Variance of Semi-parametric Estimators with Generated Regressors

نویسندگان

  • Jinyong Hahn
  • Geert Ridder
چکیده

We study the asymptotic distribution of three-step estimators of a …nite dimensional parameter vector where the second step consists of one or more nonparametric regressions on a regressor that is estimated in the …rst step. The …rst step estimator is either parametric or non-parametric. Using Newey’s (1994) path-derivative method we derive the contribution of the …rst step estimator to the in‡uence function. In this derivation it is important to account for the dual role that the …rst step estimator plays in the second step non-parametric regression, i.e., that of conditioning variable and that of argument. We consider three examples in more detail: the partial linear regression model estimator with a generated regressor, the Heckman, Ichimura and Todd (1998) estimator of the Average Treatment E¤ect and a semi-parametric control variable estimator. JEL Classi…cation: C01, C14.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uniform Convergence of Weighted Sums of Non- and Semi-parametric Residuals for Estimation and Testing∗

A new uniform expansion is introduced for sums of weighted kernel-based regression residuals from nonparametric or semiparametric models. This result is useful for deriving asymptotic properties of semiparametric estimators and test statistics with data-dependent bandwidth, random trimming, and estimated weights. An extension allows for generated regressors, without requiring the calculation of...

متن کامل

Semiparametric Profile Likelihood Estimation of Varying Coefficient Models with Nonstationary Regressors

We study a partially linear varying coefficient model where the regressors are generated by the multivariate unit root I(1) processes. The influence of the explanatory vectors on the response variable satisfies the semiparametric partially linear structure with the nonlinear component being functional coefficients. The profile likelihood estimation methodology with the first-stage local polynom...

متن کامل

@bullet @bullet a Note on the Effect of Estimating Weights in Weighted Least Squares

• ABSTRACT We consider heteroscedastic linear models for which the variances are parametric functions of known regressors. Second order expansions are derived for a class of estimators which includes normal theory maximum likelihood and generalized least squares. The result is a fairly precise description of when conventional asymptotic variance formulae are optimistic; i.e., they underestimate...

متن کامل

Non-parametric Sequential Estimation of a Regression Function Based on Dependent Observations

This paper presents a sequential estimation procedure for an unknown regression function. Observed regressors and noises of the model are supposed to be dependent and form sequences of dependent numbers. Two types of estimators are considered. Both estimators are constructed on the basis of Nadaraya–Watson kernel estimators. First, sequential estimators with given bias and mean square error are...

متن کامل

Optimal Shrinkage Estimation of Mean Parameters in Family of Distributions with Quadratic Variance.

This paper discusses the simultaneous inference of mean parameters in a family of distributions with quadratic variance function. We first introduce a class of semi-parametric/parametric shrinkage estimators and establish their asymptotic optimality properties. Two specific cases, the location-scale family and the natural exponential family with quadratic variance function, are then studied in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010